Let's consider independent random vectors $hat{boldsymboltheta}_i$, $i = 1, dots, m$, which are all unbiased for $boldsymboltheta$ and that
$$mathbb{E}left[left(hat{boldsymboltheta}_i –
boldsymbolthetaright)^{T}left(hat{boldsymboltheta}_i –
boldsymbolthetaright)right] = sigma^2text{.}$$ Let
$mathbf{1}_{n times p}$ be the $n times p$ matrix of all ones.Consider the problem of finding
$$mathbb{E}left[left(hat{boldsymboltheta} –
boldsymbolthetaright)^{T}left(hat{boldsymboltheta} –
boldsymbolthetaright)right]$$ where $$hat{boldsymboltheta} =
dfrac{1}{m}sum_{i=1}^{m}hat{boldsymboltheta}_itext{.}$$
My attempt is to notice the fact that $$hat{boldsymboltheta} = dfrac{1}{m}underbrace{begin{bmatrix}
hat{boldsymboltheta}_1 & hat{boldsymboltheta}_2 & cdots & hat{boldsymboltheta}_m
end{bmatrix}}_{mathbf{S}}mathbf{1}_{m times 1}$$
and thus
$$text{Var}(hat{boldsymboltheta}) = dfrac{1}{m^2}text{Var}(mathbf{S}mathbf{1}_{m times 1})text{.}$$
How does one find the variance of a random matrix times a constant vector? You may assume that I am familiar with finding variances of linear transformations of a random vector: i.e., if $mathbf{x}$ is a random vector, $mathbf{b}$ a vector of constants, and $mathbf{A}$ a matrix of constants, assuming all are comformable,
$$mathbb{E}[mathbf{A}mathbf{x}+mathbf{b}] = mathbf{A}mathbb{E}[mathbf{x}]+mathbf{b}$$
$$mathrm{Var}left(mathbf{A}mathbf{x}+mathbf{b}right)=mathbf{A}mathrm{Var}(mathbf{x})mathbf{A}^{prime}$$
Best Answer
Using the matrix computation only (although essentially, this solution is not that different from @DeltaIV's direct calculation), let me first slightly modify your definition of $S$ to its centralized version $begin{bmatrix}hat{theta}_1 – theta & cdots & hat{theta}_m – thetaend{bmatrix}$. We can go as follows begin{align} & E[(hat{theta} – theta)^T(hat{theta} – theta)] \ = & frac{1}{m^2}E[1^TS^TS1] \ = & frac{1}{m^2}1^T E[S^TS] 1 tag{1} \ = & frac{1}{m^2}1^T begin{bmatrix} E[(hat{theta}_1 – theta)^T(hat{theta}_1 – theta)] & cdots & E[(hat{theta}_1 – theta)^T(hat{theta}_m – theta)] \ vdots & ddots & vdots \ E[(hat{theta}_m – theta)^T(hat{theta}_1 – theta)] & cdots & E[(hat{theta}_m – theta)^T(hat{theta}_m – theta)] end{bmatrix} 1 \ = & frac{1}{m^2}1^Ttext{diag}(sigma^2, ldots, sigma^2)1 tag{2} \ = & frac{1}{m}sigma^2. end{align}
In $(1)$, we used the fact that for any conformable non-random matrices $A$, $B$ and random matrix $X$, $E[AXB] = AE[X]B$.
In $(2)$, we applied the independence assumption.
Similar Posts:
- Solved – Show that $hat{beta}_0 = bar{y}$ for OLS when the columns of $mathbf{X}$ are centered
- Solved – find examples of Takeuchi Information Criterion (TIC) at work
- Solved – The theory behind the weights argument in R when using lm()
- Solved – The theory behind the weights argument in R when using lm()
- Solved – In linear regression, are the noise terms independent of the coefficient estimators