I run this model on the 95th percentile (Stata 14)
β(2012) 1 : 1 is a dummy variable when Y is observed in 2012 β(2013) 1 : 1 is a dummy variable when Y is observed in 2013 β(2014) 1 : 1 is a dummy variable when Y is observed in 2014
I want to test the equality of β(2012) and β(2013).
Does quantile regression assumes the normality of the distribution? In other words, can I simply run a T-test for this coefficients equality test?
Contents
hide
Best Answer
You can just do a Wald test on the coefficients directly or via margins
:
. sysuse auto (1978 Automobile Data) . qreg price i.rep78, quantile(0.5) nolog Median regression Number of obs = 69 Raw sum of deviations 65163 (about 5079) Min sum of deviations 63340 Pseudo R2 = 0.0280 ------------------------------------------------------------------------------ price | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- rep78 | 2 | 170 1745.715 0.10 0.923 -3317.467 3657.467 3 | -185 1612.622 -0.11 0.909 -3406.584 3036.584 4 | 864 1645.876 0.52 0.601 -2424.015 4152.015 5 | 463 1697.437 0.27 0.786 -2928.02 3854.02 | _cons | 4934 1561.415 3.16 0.002 1814.715 8053.285 ------------------------------------------------------------------------------ . test _b[5.rep78] = _b[3.rep78] ( 1) - 3.rep78 + 5.rep78 = 0 F( 1, 64) = 0.69 Prob > F = 0.4082 . margins rep78, pwcompare(pveffects) Warning: cannot perform check for estimable functions. Pairwise comparisons of adjusted predictions Model VCE : IID Expression : Linear prediction, predict() ----------------------------------------------------- | Delta-method Unadjusted | Contrast Std. Err. z P>|z| -------------+--------------------------------------- rep78 | 2 vs 1 | 170 1745.715 0.10 0.922 3 vs 1 | -185 1612.622 -0.11 0.909 4 vs 1 | 864 1645.876 0.52 0.600 5 vs 1 | 463 1697.437 0.27 0.785 3 vs 2 | -355 878.6573 -0.40 0.686 4 vs 2 | 694 938.2936 0.74 0.460 5 vs 2 | 293 1026.051 0.29 0.775 4 vs 3 | 1049 658.3504 1.59 0.111 5 vs 3 | 648 778.3381 0.83 0.405 5 vs 4 | -401 845.0837 -0.47 0.635 -----------------------------------------------------
Edit:
You can do a one-sided test like this:
qreg price i.rep78, quantile(0.5) nolog local sign_diff = sign(_b[5.rep78] - _b[3.rep78]) testnl _b[5.rep78] - _b[3.rep78] = 0 display "H_0: _b[5.rep78] >= _b[3.rep78] p-value = " normal(`sign_diff'*sqrt(r(chi2)))
or perhaps like this:
qreg price i.rep78, quantile(0.5) nolog local sign_diff = sign(_b[5.rep78] -_b[3.rep78]) test _b[5.rep78] = _b[3.rep78] display "H_0: _b[5.rep78] >= _b[3.rep78] p-value = " 1-ttail(r(df_r),`sign_diff'*sqrt(r(F)))
Similar Posts:
- Solved – Is it possible to interpret standardized beta coefficients for quantile regression
- Solved – Is it possible to interpret standardized beta coefficients for quantile regression
- Solved – difference-in-difference regression run as quantile regression
- Solved – difference-in-difference regression run as quantile regression
- Solved – Dumthe coding vs. continuous variable in regression analysis